Lecture 1: Introduction to Python

Hendrik Weimer

Institute for Theoretical Physics, Leibniz University Hannover

Quantum Physics with Python, 04 April 2016
Goals of this course

▶ Learn to use the Python language for physics problems
▶ Master the Quantum Toolbox in Python (QuTiP) library
▶ Get ready to write code for research projects
▶ Have fun!
What this course is not about

- Algorithms
- Learning to write code
- Environmental aspects (installing packages, using clusters)
Some useful references

- The Python Tutorial: https://docs.python.org/3/tutorial/
- PEP 0008 – Style Guide for Python Code: https://www.python.org/dev/peps/pep-0008/
Outline of the course

1. Introduction to Python
2. SciPy/NumPy packages
3. Plotting and fitting
4. QuTiP: states and operators
5. Ground state problems
6. Non-equilibrium dynamics: quantum quenches
7. Quantum master equations
8. Generation of squeezed states
9. Quantum computing
10. Grover’s algorithm and quantum machine learning
11. Student presentations
Why Python?

- Combines advantages of high-level and low-level languages
- Rich standard library (e.g., including a web server)
- >75,000 modules on PyPI (Python Package Index)
- 5th most popular language according to the TIOBE index
Python 2 and 3

- Python 3.0 was released in 2008
- Many GNU/Linux distributions still use 2.7 as the default (will change in 2016/2017)
- Almost all important packages are ready for Python 3 (see: http://py3readiness.org/)
- \(E_{\text{kin}} = \frac{1}{2}m v^2 \)

⇒ We will use Python 3
Python specifics: Whitespaces

- Control flow via indentation
- No braces

```python
if a is True:
    b = c
else:
    b = d
```

- Use a good editor to assist you!
Dynamical typing

```python
a = 1
print(type(a))
a = 3.14
print(type(a))
a = 'foo'
print(type(a))
```

Output:

```python
<class 'int'>
<class 'float'>
<class 'str'>
```
String functions

str = 'foomatic'
print(str.find('bar'))
print(str.find('foo'))
print('foobaz'.strip('baz'))

Output:

-1
0
foobar
Lists

```python
a = [1, 1, 2, 3, 5, 8]
print(a[2])
print(a[1:4])
print()

a = [0]*4
print(a)
a.append(1)
print(a)
```

Output:

```
2
[1, 2, 3]
[0, 0, 0, 0]
[0, 0, 0, 0, 1]
```
b = {'name': 'Alice', 'degree': 'B.Sc.'}
print(b['name'])
print(b.keys())

Output:

Alice
dict_keys(['degree', 'name'])
Simple for loops

```python
a = [1, 3, 5, 7]
for i in a:
    print i
print()

for i in range(4):
    print i

Output:
1
3
5
7
0
1
2
3
```
def foo():
 print("I am foo!")

def bar(baz):
 print("And I am bar, called with", baz, "as an argument!")

foo()
bar("qux")

Output:

I am foo!
And I am bar, called with qux as an argument!
Using a “main” function

```python
def main():
    ...

if __name__ == "__main__":
    main()
```
This is a comment

def important_function(foo, bar=0):
 """This is a docstring describing the use of important_function.

 Keyword arguments:

 foo -- description of the first function argument
 bar -- description of the first function argument (default 0)
 """

 # More comments describing what is going on in the code

See also: PEP 0257: Docstring Conventions,
https://www.python.org/dev/peps/pep-0257/
Good:

import math
from math import sqrt

Bad:

from math import *
Let’s get started!

Let’s write our first Python program!